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Abstract

Radiation Pneumonitis (RP) is a commonly diagnosed morbidity and major dose-limiting

factor for patients undergoing radiation therapy treatment for advanced stage lung cancer.

Improving the local-control necessitates safely escalating the radiation dose to the tumor

while minimizing the normal tissue toxicity. We present a novel radiodosiomics machine-

learning framework to evaluate the combined prognostic power of pre-treatment radiomics

(CT) and dosiomics (TPS Dose Image) features to predict radiation pneumonitis (RP) in

a large cohort of 701 locally advanced non-small cell lung cancer (NSCLC) patients. Dose-

based ROIs (ROI-V5 & ROI-V20) registered to the CT simulation were employed for feature

extraction. Radiomics and Dosiomics features were computed for the bilateral and ipsilat-

eral dose-based pulmonary ROIs for patients that completed curative treatment (median

dose=64 Gy). Features were evaluated for robustness before selection was performed. A

clinical model was also curated for comparison that included conventional metrics such as

patient age, gender, smoking status, pack years, concurrent chemotherapy status, treatment

modality, and performance status as well as DVH-based metrics namely V20, MLD, and

V5. Univariate and multivariate analysis was stratified by radiation modality. A robust-

ness study was conducted to ensure feature stability before using them for model-building.

Our results demonstrate that the Radiomics+Dosiomics random forest classifier provides

statistically significant (p<0.05) augmentation to the Clinical model for RP prediction. The

ROI-V5 bilateral Radiomics+Dosiomics+Clinical (AUC=0.81) model was the highest per-

forming model and statistical better than the Clinical (AUC=0.73) model. Moreover, this

statistically significant finding was observed across both ROIs and lung-sides (bilateral vs ip-

silateral). While the combined radiomics and dosiomics approach performance was stronger

for IMRT dataset, the Radiomics+Dosiomics model was extremely effective at predicting

RP for 3DCRT and significantly (p≤0.05) better than the Clinical model. The RP risk

assessment framework presented here, if clinically implemented, would allow a radiation on-

cologist to up or down-regulate dose prescriptions based on individual risk that is based on

anatomical baseline differences, the dose distributions and the interactions thereof.
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Introduction
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1.1 Non Small Cell Lung Cancer and Radiotherapy

Global statistics show that lung cancer is the most commonly diagnosed cancer and is the

leading cause of cancer deaths [65]. According to a 2018 study, approximately 18.4 % of all

cancer deaths were attributed to lung cancer [6]. Mortality due to lung cancer is expected

to climb up 10 million in the next 15 years [66]. Non-Small cell lung cancer (NSCLC) is one

of the primary type of malignancies in patients presenting with lung cancer. Nearly 80%

of all patients with pulmonary malignancies present with NSCLC and a high majority of

them are locally advanced at the time of diagnosis. It is estimated that NSCLC accounts

for nearly 23% and 15% of all cancer deaths in men and women respectively [44]. Even for

early stage resectable NSCLC, around 30-55% of patients will develop disease recurrence

within the first 5 years of surgery [57]. Advanced stage NSCLC have a markedly higher risk

of recurrence and a higher propensity for distant recurrence [41].

While the outcomes in terms of overall survival and loco-regional control have been trend-

ing in the positive direction with the advent of modern and more safer radiation modalities,

the prognosis is far from satisfactory given the high incidence of NSCLC. As such, there is

still a large room for improvement. In a meta-analysis of published studies, median over-

all survival (OS) was found to be 28.7 months and locoregional control was 65% in the

conventional treatment arm [67].

Active research is ongoing into newer treatment modalities so as to affect better out-

comes. Work is being conducted on various fronts including search for check point inhibitors

in immunotherapy as well alternative fractionation regimens. Both of these options have

yet to overcome significant roadblocks. While an improvement towards overall survival was

observed in some immunotherapy studies, generally the efficacy results are mixed [66].

Majority of the available options treating NSCLC include radiation therapy (RT). Histor-

ically, RT was employed as part of the sequential chemo-radiotherapy framework. Concom-

mittant chemo-radiotherapy became the mainstay since it was shown to achieve better out-

comes in prospective radiomized control trials compared to sequantial chemo-RT [67]. The

current standard of care for locally advanced NSCLC is concomittant chemo-radiotherapy

with hyperfractionated 60 Gy with two cycles of platinum-based chemotherapy. However,

platinum-based chemotherapies come their own associated morbidities and risks. Moreover,

the efficacy of platinum based therapies have been shown to correlate with gene mutation

2
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status, specifically, single nucleotide poumorphisms (SNP) [42]. More recently, stereotactic

body radiation therpay (SBRT) has seen successful clinical adoption as it aims to deliver

much higher doses to the tumor over a much smaller number of fractions. But the higher

dose also decreases the margin of error and normal tissue toxicity becomes an even larger

consideration.

A meta-analysis by Mauguen et al. revealed an overall survival benefit for patients

treated with alternative fractionation as opposed to conventional fractionation. Hyperfrac-

tionation and hypofractionation may contribute to an increase in the effective total dose.

As such, adaptations to both fractination regimens are being explored to achieve better

outcomes. However, trade-offs between high therapeutic dose vs normal tissue toxicity must

be carefully balanced.

1.2 Radiation Pneumonitis

Despite the advances that have been made in terms of conformal radiation therapy, Ra-

diation induced lung toxicity (RILT) is still a major consideration while treating patients

with lung cancer [26]. The effectiveness of delivering radiation therapy has been largely

limited by normal tissue injury [30]. The manner in which these sideffects manifest can vary

greatly. They may be short-lived or long-lasting. Some of these conditions are associated

with edema, epithelial degeneration, invasion of alveoli by bronchial epithelium, endothelial

sloughing, disruption of microvasculature, and atelectasis [32]. Some of these reactions may

be reversable but others fail to repair, leading the tissue into a dysregulated state that can

manifest as fibrosis or radiation pneuomnitis [30].

Radiation Pneumonitis (RP) is an iatrogenic sideffect seen in patients treated for thoracic

malignancies with radiation therapy (RT). The incidence of symptomatic RP ranges from

around 10-30% [42]. Time to onset for RP tends to be anywhere from weeks to months

following radiation therapy but most cases are reported within the first 8 months with

patient presenting dyspnea on exertion, non-productive cough, and hypoxemia as the most

common symptoms [30]. Physical exam findings may include pleural friction rub and moist

rales [25].

The risk of developing RP can be attributed to either patient-related factors or treat-

ment/clinical factors. The manifestations of RP can also be complicated by prior lung

3
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disease. In a meta-analysis published by Vogelius et al., advanced age and pulmonary co-

morbidities were shown to be significantly associated with the risk of developing RP [60].

Surprisingly, in the same study, ongoing smoking was shown to be protective which may be

explained by lower inflammatory reaction to radiation among smokers.

Pre-existing pulmonary issues are fairly common in patient population undergoing radi-

ation treatment for NSCLC. Generally, these pulmonary conditions are classified into two

broad categories - obstructive or restrictive. Conditions like Asthma and chronic obstructive

pulmonary disease (COPD) fall in the obstructive category and emphysema and intersti-

tial lung disease (ILD) fall in the restrictive category [30]. The effect of COPD on RP is

mixed. On the other hand, ILD is strongly associated with increased risk of RP. In a large

retrospective analysis of nearly 504 patients treated with sterotactic body radiation, grade

≥ 3 RP was higher in the ILD group (32 %) compared to the group without ILD (2 %,

p< 0.001) [2]. Similar correlations with ILD for patients who developed RP were found in

another study of 651 patients treated with RT; 78 % of patients that developed RP were

found to have pre-existing ILD [46].

The COVID-19 crisis is exposing the population to a range of debilitating chronic con-

ditions. Predicting a patient’s risk of RP post-SARS-nCOVID-19 pandemic is especially

relevant due to the nature of the disease. One of the major manifestations of the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is that it directly affects the

repiratory system of the host [52]. While it is too soon to know exactly how the comorbidi-

ties brought on by COVID-19 will affect a patient’s risk of developing RP, it is certain that

a significant portion of our future patient populations will have previous COVID exposure.

Therefore, it will be imperative to gather data and develop models that are able to easily

incorporate COVID-19’s effect on RP risk.

As stated in 1.1, while early stage lung cancer can be treated definitively with either

surgery or radiation alone, management of advanced lung cancer involves some combination

of chemotherapy and radiation. The two modalities are known to have snergistic effect but

the sequencing of these two modalities has been a matter of debate with mixed findings

[30]. Currently, concurrent treatment is the standard of care. Sequential treatments may be

considered based on elevated complexicity of a particular case, owing to large tumor volumes

and unmet dosimetric cutoffs or poor performance status. Some studies have suggested an

increased risk of RP for sequential chemoradiation (CRT) [61], however, the data maybe

4
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biased as the CRT patients tend to be higher risk with poorer performance status [30].

More recently, immunotherapy has shown great promise in the management of NSCLC.

Results from various studies have proven immunotherapeutic agents to be superior to stan-

dard chemotherapy [50, 28, 5]. However, the toxicities associated with immunotherapy are

not fully understood yet and the we are just uncovering the surface. Nevertheless, ILD

and immunotherapy are already shown to be strongly correlated in large retrospective trial

of over 1800 patients [18]. Another recent analysis of published studies found higher RP

incidence in patients treated with immunotherapy when compared to other drugs used in

treating NSCLC [13, 27, 53, 24, 33, 40]. Since RT has been shown to prime the immune

system for a response from immunotherapy, the synergistic increase in RP risk may need to

also be considered.

RT is an integral part of the standard-of-care management of LA-NSCLC. RP remains a

significant barrier to radiation dose escalation in order to achieve adequate local control in

the treatment of locally advanced lung cancer [42]. Radiation Induced Lung damage (RILD)

may be attributed to radiation toxicity to healthy tissue as well inflammatory changes that

follow. In an effort to minimze the risk of radiation toxicity to normal pulmonary tissue,

dosimetric cutoffs were proposed in late 1990s and have been studied extensively over the last

two decades. Radiation dose to lung volumes has been correlated with risk of pneuomonitis.

DVH-based metrics such as volume of lungs receiving > 20 Gray (Gy; V20), > 5 Gy (V5)

and mean lung dose (MLD) have been shown to associate positively the risk of developing

correlated with the risk of developing RP [23, 37, 62]. Corresponding dosimetric cutoffs,

specifically lowering V20 and V5, to lower the risk of RT-induced RP, were proposed and

are currently used to evaluate treatment plan quality in the clinic. Most studies have

validated V20 and MLD as the primary parameters to be controlled to lower RP risk, in

addition to various other DVH derived volumetric parameters. However, these additional

metrics are often collinear i.e if one increase, the other one increases too, and too often

the difference in there predictive power is minimal. Additional attempts to use conditional

metrics that control for the dose to the heart and lungs have been put forward [59, 22] but

follow-up studies have failed prove its usefulness [63]. As a result, the quest for more robust

RP predictors has continued. These dosimetric cutoffs while useful in clinic, do not take

into account a continuum of risk of normal tissue toxicity which may be determined by the

interaction between dose distribution, patient based baseline anatomical differences seen on

5
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the CT, as well as other underlying biological factors in the patient [42]

Radiation treatment technique also has significant impact on the RP risk. 3D-Conformal

Radiation Therapy (3DCRT) use to be the mainstay for the management for LA-NSCLC.

Compared to 3DCRT, newer image modulated radiation therapy (IMRT) provides better

conformality, better target coverage and is highly effective at avoiding adjacent organs at

risk (OARs) thereby enhancing the therapeutic ratio. In a recent prospective Phase 1

study of patients with LA-NSCLC undergoing definitive IMRT with corresponding 3DCRT

plans, a decrease in normal tissue exposure for the IMRT cohort was observed [4]. The

strongest evidence that propelled IMRT as the standard of care treatment for LA-NSCLC

was provided form a secondary analysis by Chun et al. of RTOG 0617, a trial in which

patients were treated with concurrent CRT with or without cetuximab to a dose of 60 vs 74

Gy [10]. Since the choice of RT technique was not randomized, the IMRT group were patient

with larger tumors and higher complexicity. Even so, univariate and multivariate analysis

showed that the patients in the IMRT group had significantly lower occurrence of Grade 3

or higher RP. Despite the improvements provided by IMRT, the dosimetrics variables used

in clinic for treatment plan evaluation condense a three dimensional distribution to a single

metric and may not capture all the potentially useful spatial information. Therefore the

quest for more robust RP biomarkers has proceeded on.

Another major factor in studying pneumonitis is the variation in grading across physi-

cians and clinics. Some of the commonly used standard for RP grading are: a) Com-

mon Terminology Criteria for Adverse Events (CTCAE) b) Radiation Therapy Oncology

Group (RTOG) c) European Organization for Research and Treatment of Cancer (EORTC)

d) Southwest Oncology Group (SWOG) e) Eastern Cooperative Oncology Group f) World

Health Organization. Our work utilized the the CTCAEv.4 criteria for RP grading. Find-

ing consistency in the grading of RP can be a challenge in itself owing to various evolving

standards. These standards attempt to encompass the various clinical, anatomical and ra-

diological factors present in a subject following radiotherapy. Newer deep learning based

models could help consolidate these available grading schemes so that there is little intra-

intstituition and inter-instituition variability in the diagnosing the presence and extent of

RP.
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1.3 Radiomics

Radiomics is a recently developed technique that aims to address the drawbacks of conven-

tional outcome models by using high dimensional mineable features extracted from large

number of data-characterization algorithms [38, 36]. Historically, tumor characterization

is based on invasive biopsies or visual assessments of medical images. Biopsies may give

an incomplete understanding of the tumor characteristics as it is derived via random spa-

tial sampling of the tumor. Moreover, malignant tumors are known to be spatially and

temporally heterogeneous as result of regional variations in metabolism, gene expression,

vasculature and oxygenation [43, 45, 9, 19]. In addition, as state earlier, medical image

evaluation can itself be subjective and physician dependent. Visual assessments of medical

images can suffer from large intra-observer and inter-observer variability [17]. The radiomics

framework aims to eliminate these weaknesses by standardizing the evaluation process root-

ing it in quantitative, computer-aided decision making.

The advances in medical imaging have made possible non-invasive sampling of the tumor

and its microenvironment. The phenotypic patterns of anatomy, i.e tumor, as seen across

imaging modalities has been associated with underlying cellular and genetic factors [16].

CT imaging features have been found to be associated with anaplastic lymphoma kinase

(ALK) mutations in lung cancer patients [64]. Another study found significant correlation

of CT images with "gross appearance of intra-tumoral vascularity" and "well-defined tumor

boundaries". Similar associations with underlying physiological factors have been presented

in magnetic resonance imaging (MR) and in PET imaging data. Aerts et al. showed us-

ing multiple external validation data, that radiomics signatures could be used for outcome

prediction and clinical decision making [1].

CT-based features have been particularly successfully implemented to predict various

endpoints for NSCLC datasets. In a study of adenocarcinoma patients, Coroller et al. were

able to use pre-treatment CT-based signature as a prognostic biomarker for distant metas-

tatsis [12]. Additional outcomes including disease-free survival, overall survival, pathological

complete response, and local recurrence have been successfully studied using CT-based ra-

diomics [11, 29].

Delta-radiomics is another application which has been used for outcome modeling. As

the name suggests, delta-radiomics uses features that describe the change in the feature
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value over the course of a given treatment (RT or CRT). Studies have suggested that such an

approach can improve prognostic value of outcome models. This approach has primarily been

applied on CT and PET imaging data. Fave et al. employed mixed-effects models to identify

markers that decrease significantly over the course of treatment thereby showcasing the

value-added nature of delta-feature analysis to model overall survival, distant metastasis and

local recurrence. Carvalho et al hypothesized that the FDG-PET metabolic uptake patterns

may allow for early response assessment over the course of treatment. In a prospective

dataset of 54 local advanced NSCLC, their approach provided benefit of timely assessment

of response to radiotherapy when compared to human-based inference [7].

While the initial impetus of radiomics was based around prognostication and outcome

modeling, CT as well PET-based radiomics have shown promise in modeling radiation-based

toxicities especially RP. Traditional models for predicting RP models lack the the ability

to adequately consider the baseline differences in patient lung function and radiosensitivity

[34]. Historically, RP studies have relied on radiologist-examined semiquantitaive scoring of

interstitial lung disease which does not capture hetrogeneity in lung function across the lung

population [34]. Recent advances in image analysis have been focused around shifting from

a qualitative to a quantitative analysis of CT data [38]. In addition to conventional clinical

characterstics such as tumor size and shape, CT features are able to capture the remodeling

of normal pulmonary tissue as a result of radiation therapy. In a study by Cunliff et al,

curated "delta-features" from pre and/or post CT were shown to be moderately associated

with RP (grade >2) in a small cohort of patients that were treated for esophageal cancer

using "serial delta-radiomics" approach [15]. In a follow-up prospective study, Cunliff et al

([14] correlated the change in CT feature values with radiation dose, thereby showcasing the

ability of radiomics to measure patient lung tissue reaction to RT and assess RP development.

The primary issue with a delta-feature based model is that it does not allow to any plan

adaptation to minimize the RP risk. In an ideal scenario, normal tissue toxicity model

should be able to aid physicians pre-treatment in regulate radiotherapy dose and/or other

treatment prescriptions. As such, the effort must be focussed on an approach that enables

a robust pre-treatment RP risk evaluation.
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1.4 Dosiomics

The success of radiomics and machine-learning based quantitative analysis of medical imag-

ing has precipitated new ways in which other data streams could be utilized for outcome

modeling. Specifically in regarding to modeling normal tissue toxicity modeling, researchers

have adapted radiomics-type analysis to features extracted using 3D dose distributions (Do-

siomics) to supplement or outperform DVH-based models. As mentioned in SECTION, the

idea of using DVH metrics assumes that these metrics describe most, if not all, of the use-

ful information that a physicians needs to minimize the dose to OARs and normal tissue

toxicity. DVH metrics are certainly more intuitive to understand and regulate. However, as

the treatment planning transitions to into semi and fully automated algorithms, effort are

also undergoing to uncover predictors to model toxicity through a more multivariate lens.

Computerized engines could easily be trained to optimize such metrics that are not limited

by easy human interpretation.

One of the most promising implementation of Dosiomics was by Gabrys et al, for xeros-

tomia risk assessment in comparison with normal tissue complication probability (NTCP)

models based on mean radiation dose to the parotid glands. Their analysis, they used

dosiomics features in addition to radiomics and NTCP predictors to build logistic, ran-

dom forest (RF) and support vector machine (SVM) classifiers and were able to infer that

dose-based shape descriptors were beneficial for xerostomia prediciton in highly conformal

radiotherapy patients [20]. In another recent work by Rossi et al, inclusion of dosiomics

features to DVH based metrics was shown to provide statistically significant improvement

in prediction of gastrointestinal and genitourinal toxicity rates in prostate cancer patients

[51].

Moderately successful attempts to apply dosiomics for RP prediction have been made. In

a study of 70 NSCLC patients treated with volumetric arc therapy (VMAT) radiation, Liang

et al. demonstrated that the dosiomics features have approximately equivalent predictive

power as NTCP predictors and that the spatial dosiomics features are able to able to predict

RP. In a follow-up study, the same group implemented convolutional neural networks on the

3D dose ditributions with modest performance to predict RP. Generalization of such an

approach on a larger, more representative dataset is unknown and needs to be evaluated

[39].
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However, such an approach of using dosiomics features alone or even in combination

with NTCP predictors does not account for patient-specific anatomical data that is readily

available in the clinic. In modern day radiation oncology clinics, every patient undergoes a

pre-treatment CT simulation for treatment planning purpose. Devising an approach that

combines anatomical and dose-based predictors could allow for a more comprehensive RP

risk evaluation. In addition, as more studies understand the detrimental effects of COVID-19

on the pulmonary tissue and immune system, it is all the more important to invent methods

that leverage CT data as it may inform the model. The motive behind the work presented

hereforth was to implement a new methodology that combines radiomics and dosiomics

predictors extracted from the pulmonary volumes so as to robustly predict RT in a large

dataset of 701 NSCLC patients.
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Chapter 2

Methods
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2.1 Dataset

For our Institutional Review Board (IRB) approved prospective study, we considered a

large cohort of 701 NSLSC patients with locally advanced stage 3 lung cancer that were

treated with radiation therapy at Brigham and Women’s Hospital, Boston, MA between

2001 and 2014. Patients who did not complete their courses (n=63) or had severe CT

artifacts (n=42) were excluded from the study. Table B.4 and Table B.5 list the clinical

and dosimetric characterstics of the remaining 596 patients. Nearly three-fourth (Figure

A-3) of the patients were treated with 3DCRT and last fourth were treated with conformal

IMRT/VMAT doses. Nearly 59% of the patients (Figure A-4 were treated with concurrent

chemotherapy, around 24% were treated with neoadjuvant therapy (chemo + radiation +

surgery), around 10% of the patients were post-surgery cases that were also included in

our dataset. The remaining 6% were treated with definitive radiation therapy. Based on

histological data, most of the patients were treated for adenocarinoma, followed by squamous

cell carcinoma (Figure B.4).

The cohort analyzed in this work spans more than a decade ranging from year 2003

- 2014. 3DCRT was the standard-of-care way of delivering curative treatment for patient

with thoracic tumors until the advent of image modulated radiation therapy (IMRT). These

clinical advancements are reflected in our cohort which includes patients that were treated

with 3DCRT (75%) as well as IMRT (25%). Figure A-1 depicts the radiation start date

for each of the patients. IMRT was commissioned at BWH in 2009 and the patients that

received the newer modality were chosen by the physicians and not randomized. The RP

grading for this study was based on the independent ratings of two physicians that utilized

the CTCAEv.4 criteria.

2.2 Image Processing and Pulmonary Volume Generation

The treatment planning CT, planned dose as well as the tumor and organ volumes as

delineated by the physicians were extracted from the treatment planning software (TPS).

All the Digital Imaging and Communications in Medicine (DICOM) files were converted to

a more portable Nearly Raw Raster Data (NRRD) format using plastimatch [56]. We used

two seperate RT plan dose-based pulmonary regions of interests (ROIs) for each patient

(ROI-V5 and ROI-V20). In other words, for each patient the pulmonary ROIs used for
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feature extracted are tied to the dose-distribution that they eventually received during the

treatment. The general workflow for the pulmonary volume generation is shown in Figure

A-19. Irradiated volume Vdose (Gy) is a commonly used metric to gauge the toxicity risk of

a thoracic radiation therapy treatment plan. Both V20 Gy and V5 Gy are associated with

radiation based toxicity in lung cancer. ROI-V5 corresponds to the region around the tumor

that received ≥ 5 Gy and ROI-V20 corresponds to the region around the tumor that received

≥ 20 Gy.

For each patient, CT registered TPS dose distribution was overlayed to extract out the

two ROIs by first subtracting the internal tumor volume (ITV) from the lung. For cases

that did not have an ITV, gross tumor volume (GTV) was used. Clinical tumor volume

(CTV) was used for a subset of surgical cases that are also included in the dataset. The

intersection of respective V5 and V20 dose and pulmonary contours was used to extract the

ROIs. The ROIs were also labelled according to the lung sidedness so as to eventually be

able to develop bilateral and ipsilateral RP models.

2.3 Feature Extraction

Various open-sourced toolkits are available to extract radiomics features. We adopted the

PyRadiomics open-sourced package for feature extraction. The PyRadiomics platform can

extract features from various medical images (such as CT, PET, MRI) [58]. The images are

first pre-processed which involves basic imaging processing such as isotropic voxel resam-

pling. Various imaging filter can be enabled and applied on the original (unfiltered) image

via a customization parameter file. Enabling imaging filters allows the extracted features

to capture different textures. Table B.1 shows the enabled feature classes and the corre-

sponding number of features in each class. In addition to the unfiltered image, the same set

of features were extracted for filtered images. Three image types were enabled a) Original

(Unfiltered) b) Laplacian of Gaussian (LoG) Filtered Image c) Wavelet Filtered Image

Laplacian of Gaussian filter is an edge enhancement filter which emphasizes the areas

of grey-level change. Parameter 𝜎 is used to define how coarse the emphasized texture

should be with a low sigma value emphasizing finer textures, where as a high sigma value

emphasizes coarser textures. Features were computed for five sigma values 𝜎 ∈ [1-5]. Two-

level wavelet filter was enabled with each level yielding 8 different decompositions per level.
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Barring the original image itself, 15 unique wavelet decompositions were used for wavelet

feature extraction.

The ROI-V5 and ROI-V20 were used to extract 1967 radiomics features from the CT

scan and 1967 dosiomics features from the TPS dose distribution. Voxels were resampled to

3 mm in each dimension prior to feature extraction to standardize the voxel spacing for all

the cases in the dataset. For radiomics features a voxel intensity binwidth of 25 hounsfield

units (HU) was used for textural features. For dosiomics features, a dose intensity of 1

Gy was used for textural features. Features were computed for the bilateral and ipsilateral

pulmonary ROIs. Once the features were calculated the results are written to the comma-

separated file and ready for further analysis. In summary, eight seperate dataset feature

files (Table B.3) were analyzed using the workflow depicted in Figure A.

2.4 Feature Robustness

The quantitative analysis of CT and Dose Images involves converting the imaging data

into mineable data by extracting a large number of statistical features. Before using these

features as potential biomarkers in the model, their robustness must be evaluated. Many

of these features are often found to be unstable between imaging scans acquired within

weeks-even minutes of each other (Tixier 2012).

In a study by Balagurunathan et al. in which repeated scans (Test and Re-Test scans)

were taken 15 minutes apart, only 30% of the considered features were found to be ro-

bust (ICC > 0.90) The robustness was defined by rater variability statistic- Intra-Class-

Correlation coefficient (ICC). This suggests that a large number of the features may be

unreliable and the robustness must be evaluated before moving forward with the step of

model building. To our knowledge, the repeatability of dosiomics features has not been

investigated. Understanding the stability of RT Dose Image features will be important for

future dosiomics applications.

Both Radiomics and Dosiomics features were individually evaluated for robustness using

the intra-class correlation coefficient (ICC). The analysis was performed using the R package

irr [21]. In order to evaluate the robustness of radiomics features, we considered a Test-

Retest dataset [68]. 22 scans were taken 15 minute apart using the same CT scanner and

imaging protocol. The tumors were delineated by the same physicians. ROI-V5 and ROI-
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V20 pulmonary volumes were extracted for each of these cases. A 25 mm expansion around

the tumor was used for ROI-V20. The DVH metrics showed that the mean V5 for the

dataset was nearly 73% larger than V20 for our cohort. Therefore, a 44mm expansion was

used to create the ROI-V5 for the Test-Retest. Radiomics feature robustness was assessed on

a Test-Retest Rider dataset using the methodology described by Chintan et al [47]. Feature

with ICC ≥ 0.80 were retained for further analysis.

A dosiomics robustness study was devised using the planned dose distributions for pa-

tients that were excluded from the analysis due to incomplete prescription or CT artifacts.

ROI-V20 and ROI-V5 were created for these patients. Features were computed for ROIs by

shifting them by ±3mm in x,y,z directions to replicated patient setup uncertainity. Only

features with ICC ≥ 0.80 in all six directions were retained for further analysis. Dosiomics ro-

bustness was stratified by radiation modality (3DCRT & IMRT). Table B.2 lists the number

of radiomics and dosiomics features that were found to be robust according the methodology

described above. Out of the 1967 radiomics features that were extracted, 1483 (∼75%) ROI-

V5 features and 1336 (∼68%) ROI-V20 features were found to be stable. For the dosiomics

study, the stability analysis was stratified by radiation modality. For the pooled dataset,

1222 (∼62%) ROI-V5 features and 1185 (∼60%) ROI-V20 dosiomics features were found

to be stable. As expected, these statistics were largely maintained for the 3DCRT dataset

owing to the large number of cases. Interestingly, a slightly lower number of IMRT features

were found to be robust for the ROI-V5 and ROI-V20 features (Table B.2.

2.5 Feature Selection

The PyRadiomics feature extraction suite generates a large number of features from the

input images. Not all features, however, provide additional useful information for model

building. A high majority of these features tend to be highly correlated.

Traditional machine-learning approaches are different from deep learning methods in

that the features can be hand engineered by using sophisticated algorithms. Deep learning

methods, such convolution neural nets are able to peform this step implicitly while focussing

on a single parameter called the loss function. Such an approach is suitable when a well-

performing model is the end goal. In many applications, it may be important to explicitly

identify the variables that contribute to a good performing machine learning model. Our
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approach assumes that predicting RP is as important as learning about the building blocks

of the model.

Feature selection or variable selection is the process used in machine-learning to select a

subset of input variables based on certain metrics that maximize the predictive performance.

In addition to getting insight into the input variables, feature selection methods also help

avoid or minimize overfitting and provide fast and more cost-effective models [54]. Feature

selection methods may fall under two broad categories dictated by the kind of dataset

available - a) Supervised Feature Selection or b) Unsupervised Feature Selection

Supervised learning is when the classifier are trained on ground truth labels. Our work

is operating under this framework and using the binary RP labels that based on physicians

grading of RP. Unsupervised learning involves training a model on variables that are ex-

tracted via a clustering analysis of a multi-dimensional variable space when the ground truth

labels are not available or possible.

Feature selection methods can also be categorized under three broad categories based on

how they are implemented in the machine learning workflow.a) Filter methods, b) Wrapper

methods, and c) Embedded methods. For our study, we used Minimum Redundancy and

Maximum Relevance (mRMR) feature selection method which is filter-based supervised

feature selection framework. Given a set of features and target labels, mRMR selects the

relevant features based on F-statistic while minimizing correlated features using Pearson

correlation coefficient [49]. The feature selection was carried out using the survcomp package

in R statistical language [55]. The mrmr.cindex utility generates a ranking based on the

concordance index of the variable given a binary outcome vector. For each of the eight

datasets mentioned in B.3, the top five features were retained for the model building.

2.6 Clinical Predictors

In order to compare the performance of our approach with published clinical predictors

of RP, several patient and treatment related variables were incorporated into a clinical

model. The patient and treatment related variables included age, gender, smoking, pack

years, concurrent chemotherapy status, treatment modality, and performance status were

considered for the clinical model. In addition to these, DVH based metrics, specifically MLD

and V20, and V5 were also included in the set of clinical predictors. Due to missing data for
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significant number of the patients, the DVH-based metrics were computed manually using

the tumor subtracted pulmonary volumes and the dose distributions. Table ?? lists all of

the predictors and the variable type with which they were encoded in the analysis.

Vd of the lung receiving dose d given by:

𝑉 d =
𝑁Dose≥ 𝑑

𝑁all voxels
(2.1)

Bilateral MLD for each patient was also computed according to the following formula:

𝑀𝐿𝐷 =

∑︀𝑒𝑎𝑐ℎ𝑣𝑜𝑥𝑒𝑙 𝐷𝑜𝑠𝑒

𝑁all voxels
(2.2)

2.7 Statistical Analysis

The differences between the patients characteristics (Table B.4 by RT technique (3DCRT

vs IMRT) was assessed using a Wilcoxon test for continuous variables and Fisher Exact

Test for categorical variables. The primary endpoint of the study was grade ≥ 2 RP per

NCI CTCAE version 4.03. Both the univariate and multivariate analysis were stratified by

radiation modality recognizing that the dosiomics feature performance may be a function of

the type of dose-distribution a patient receives.

The predictive power of the top five features for each dataset was first assessed univari-

ately using concordance index for binary response which is also equivalent to the area under

the curve (AUC). Statistical significance is indicated for p-value ≤ 0.05 after accounting for

multiple testing using the false-discovery-rate procedure by Benjamini and Hochberg [3].

A wide range of machine learning algorithms are available as packages in R. Choosing a

specific model can be understood as a tradeoff between interpretibility and flexibility [31].

Each model has its own set of assumptions and bias. Models that fall in generalized linear

models category, for example, Logistic Regression, tend to be more interpretable as they

generally probe the additive effect of variables/features on prediction. This comes with

a certain assumption about the underlying function that describes the phenomenon one is

trying to model. Other non-parametric models provide more flexibility. For our multivariate

analysis, we chose a simpler, more interpretble logistic regression for classification model as

well as a less interpretable but flexible random forest classifier which is known for its ability

to minimize over-fitting while at the same look inherent interaction effects between the
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predictors (CT and Dose).

The logistic classification model is a member of the generalized linear model family.

These algorithms are more intuitive to interpret and usually have no or very few hyper-

parameters that require tuning during the training process. However, in their simplest

implementation, only additive effect of variables can be probed.

Secondly, we implemented a random forest model. The RF algorithm is known to mini-

mize over-fitting as well as implicitly capture interaction effects between the predictors. The

analysis was implemented in R Statistical language [48] using the caret package [35]. Anal-

ysis workflow is depicted in Figure ??. The data was iterated over 100 random data splits

into training (70%) and test (30%) to assess the extent of predictive power. Models were

internally validated using a 10-fold cross-validation. The median test AUC as well the range

for each iteration are reported. Combined feature sets were derived from the mRMR se-

lected radiomics and dosiomics features. In total, 7 feature sets or models were considered in

our multivariate analysis - a) Radiomics b) Dosiomics c) Radiomics+Dosiomics d) Clinical

e) Radiomics+Dosiomics+Clinical

The comparative performance of the model was only evaluated for the random forest

models using a non-parametric permutation test based on the procedure described in [11].

Pairwise greater-than alternative hypotheses were investigated for combined models namely

Radiomics+Dosiomics and Radiomics+Dosiomics+Clinical against the Clinical model. The

ground truth binary labels were randomly resampled (k = 100) and a new RF model fit-

ted. For each permutation, Wk statistic was extracted for a one-sided Wilcoxon test and

compared with true label W0. P-values were defined as follows:

𝑝 =
1

𝑛permut + 1

𝑛permut∑︁
𝑘=1

⎧⎨⎩ if 𝑊𝑘 > 𝑊0 = 1

if 𝑊𝑘 < 𝑊0 = 0
(2.3)

2.8 Class Imbalance

Since machine learning algorithms are optimized to minimize the overall prediction error rate

during training, special treatment is in order when analyzing datasets that are imbalanced.

In our dataset, nearly 12% of patients developed RP consistent with the published prevalance

rates. Due to this imbalanced binary response classes, machine learning models tend to learn

the non-events better the events. Such models have high specificity but poor sensitivity.
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There are established techniques available in order to address the issue of class imbalance.

Synthetic Minority Oversampling Technique (SMOTE) is a widely used technique to

address class imbalance which uses K-Nearest Neigbor apporach to create new minority

observations during the training process such that model learns both RP event cases and

non-event cases equally [8]. The best model from training is then evaluated for performance

on the hold-out set which still has the original ratio of event and non-events. SMOTE

has been successfully implemented in various medical science application such as detecting

breast cancer applications. The use of such resampling method is implemented within the

cross-validated loop such that the validation results are always evaluated on data that is not

affect by resampling and has the original event/non-event ratio.
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Chapter 3

Univariate Results
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3.1 Clinical Characterstics

Table B.4 shows the clinical characteristics of the 596 patients included in the analysis. The

mean age for our cohort was 65.0 years divided evenly between the two genders. Over 90%

of the patients were either current or former smokers. Nearly 85% of the patients were

treated with concurrent chemotherapy. Most patients presented with stage IIIA disease

(55.7%) followed by stage IIIB (32.7%). 85% of the patients were treated with concurrent

chemotherapy and about 20% also underwent prior induction chemotherapy.

Majority of the patients were treated with 3DCRT (75.8%) and the remaining 24.2% were

treated with IMRT (majority static field IMRT, n=5 volumetric modulated arc therapy).

Out of 73 cases in total that developed grade≥2 RP, more patients (64%) were treated with

3DCRT than IMRT (p = 0.02). 12.2% of all patients were diagnosed with grade≥2 RP but

significant more of the IMRT cases were diagnosed with RP (p = .02, Fisher Exact Test).

The bilateral and ipsilateral V20 and V5 volumes (Table B.5) for the IMRT subgroup were

significantly larger (pV20 = 0.04 , pV5 = 6.1e-4, Wilcoxon) compared to the patients treated

with 3DCRT. The average MLD for the pooled cohort was 13.9 Gy, significantly different

between the two modalities (p = 1.1e-6).

3.2 Clinical Predictors of Radiation Pneumonitis

Figure A-5a shows the univariate analysis for the pooled dataset. MLD was the strongest

clinical predictor of grade ≥ RP (AUC = 0.70) followed by V20 (AUC = 0.70) and V5

(AUC = 0.65). While MLD and V20 were predictive in the pooled as well as the stratified

datasets (Figure A-5b,c), the absolute performance of both predictors was noticeably higher

for the IMRT subsample (AUCMLD = 0.79, AUCV20 = 0.81) in contrast to the 3DCRT

subsample (AUCMLD = 0.64, AUCV20 = 0.62). Such an improvement was not seen for

V5 which was statistically significant in predicting RP in all the datasets. Smoking was

moderately positively associated with RP and the best predictor for the 3DCRT subgroup

(AUC = 0.66). The V5 metric was found to be moderately predictive of RP in both 3DCRT

(AUC = 0.60) and IMRT (AUC = 0.69) subgroup and statistically significant. Most of the

patient-based metrics except age and smoking were not significantly associated with RP.
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3.3 Bilateral Features

ROI-V20

Radiomics features extracted from the ROI-V20 were comparable in performance to ROI-V5

peritumoral features with textural complexity measures such as wavelet.LHL_glcm_Imc1

and wavelet.LHL_glcm_Imc2 showing moderate associations for the pooled and 3DCRT

datasets. All five V20 radiomics features selected on the 3DCRT stratum were protective

in nature and the best predictor was wavelet.LHL_glcm_Imc2 (AUC = 0.65), consistent with

the corresponding ROI-V5 3DCRT results. Additionally, wavelet2.HHL_gldm_DependenceEntropy

(AUC = 0.65) and wavelet2.LHH_glcm_Correlation (AUC = 0.64) were also predictive and

significant.

Radiomics features for the IMRT subsample showed relatively stronger performance

overall. Most features were directly correlated with the probability of developing RP. The

strongest predictors were wavelet.LHH_gldm_DependenceNonUniformity (AUC = 0.73) and

wavelet2.LHL_glszm_SmallAreaLowGrayLevelEmphasis (AUC = 0.72).

The higher performance of dosiomics features for the IMRT subsample was also ob-

served for the ROI-V20 features. 3D_firstorder_Maximum dosiomics feature was signifi-

cantly associated with RP all three datasets but the predictive power was highest for

IMRT (AUC = 0.75). wavelet2.LLH_glszm_GrayLevelNonUniformity (AUC = 0.73) and

original_glszm_SizeZoneNonUniformity (AUC = 0.71) were also significantly associated with

RP for the IMRT cohort.

ROI-V5

Radiomics features selected in the pooled cohort were descriptors of texture and shape.

wavelet2.LLH_glcm_Imc2 was the strongest radiomics predictor and inversely correlated

with RP with AUC = 0.63 and was statistically significant (p<0.05). Dosiomics features

selected on the pooled dataset showed only slight associations with the AUC values ranging

from 0.60 to 0.62.

Wavelet.LHL_glcm_Imc2 was selected as the best radiomics predictor for the 3DCRT

subsample. Shape based features, original_shape_Flatness and original_shape_Elongation

were the strongest radiomics features for the IMRT subsample with AUC=0.71 and AUC=0.68,

respectively. The predictive performance of the dosiomics features for the IMRT subsample
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ranged from 0.65 to 0.72 and original_glszm_SizeZoneNonUniformity, Original_shape_Flatness

(AUC=0.71), wavelet2.LHL_firstorder_Mean (AUC=0.70) were strongest predictors. The

3DCRT selected dosiomics features were descriptors of the textural complexity but the uni-

variate performance of these features, however, was not statistically significant.

3.4 Ipsilateral Features

ROI-V20

Radiomics features extracted from the ipsilateral ROI-V20 showed moderate univariate pre-

dictive power for RP predictions with AUC values ranging from 0. 0.61 - 0.65. Textural

complexity descriptor wavelet.LHL_glcm_Imc1 was once again the best radiomcis predictor

(AUC = 0.65) for the pooled dataset followed by the ROI shape descriptor

original_shape_Maximum2DDiameterColumn (AUC = 0.64).

The ipsilateral ROI-V20 dosiomics performance for the pooled and 3DCRT datasets was

moderate. For the pooled dataset, the univariate performance ranged between 0.60-0.66

with wavelet.HLL_glcm_Idmn (0.66) and intensity-based feature,

log.sigma.5.0.mm.3D_firstorder_Maximum (0.64) were the strongest dosiomics features

for the pooled dataset.

When stratified by radiation technique, the mrmr radiomics and dosiomics features se-

lected for the 3DCRT were quite similar. wavelet.LHL_glcm_Imc2 was the best radiomcis

predictor and wavelet.HLL_glcm_Idmn was the best dosiomics predictor for the 3DCRT

dataset. While the performance for the 3DCRT dataset was modest, the all the features

associated with RP were found to statistically significant.

Most of the top 5 mrmr radiomics and dosiomics features selected on the IMRT subgroup

showed particularly stronger prognostication power to predict RP. Textural radiomics fea-

ture, wavelet.LHH_gldm_DependenceNonUniformity (AUC = 0.74) and filtered first order

dosiomics feature, log.sigma.5.0.mm.3D_firstorder_Maximum (AUC = 0.74) exhibited the

strongest associations. Dosiomics dose coarseness descriptor, wavelet.LHL_ngtdm_Coarseness

(AUC = 0.71) and radiomics coarseness predictor log.sigma.2.0.mm.3D_ngtdm_Coarseness

(AUC = 0.70) were both negatively associated with RP.
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ROI-V5

Ipsilateral ROI-V5 Radiomics and dosiomcis features selected in the pooled cohort were

mostly descriptors of texture. wavelet2.LLH_glcm_Imc2 was the strongest radiomics pre-

dictor and inversely correlated with RP with AUC = 0.63 and was statistically signifi-

cant (p<0.05). Most of the dosiomics features other than the strongest dosiomics predictor,

wavelet.HLL_ngtdm_Contrast ( ) showed poor predictive power for the pooled dataset, a

result that also carried over into the dosiomics performance when the datasets were stratified.

The 3DCRT dosiomics features were not good predictors of RP with only two of the five

selected dosiomics features showing statistically significant predictive power. In contrast,

the IMRT subgroup univariate performance was stronger and the radiomics and dosiomics

features selected were dissimilar to the ones selected in the pooled or 3DCRT datasets.

Texture non-uniformity radiomics and dosiomics statistics were strongly associated with

RP. Overall, the performance of features selected on the IMRT subgroup was around 0.70

or more in the univariate setting. Moreover, all of radiomics and dosiomics features were

statistically significant based on the criteria described in Section 2.7.
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Chapter 4

Logistic Classification Models
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4.1 Bilateral Models

ROI-V20

The logistic classifier built using bilateral features from ROI-V20 (Figure A-14) exhibited

poor performance for the pooled dataset. The model performance ranged from 0.64 - 0.68

(median AUC). The Clinical model had the highest median AUC (0.68) and the radiomics

model was the lowest performing model.

Radiomics+Dosiomics performance (AUC = 0.70) was appreciably higher for the 3DCRT

subgroup than the Clinical model (AUC = 0.64) (Figure A-14). The Radiomics+Dosiomics

model was also the best performing model for the 3DCRT subgroup. Including the clinical

predictors into the Radiomics+Dosiomics model did result in a modest improvement in the

predictive power compared to the Clinical model. The dosiomics features used alone were a

poor predictor of RP (AUC=0.60).

In contrast, the Dosiomics model performance for the IMRT subgroup (Figure A-14),

was significantly stronger (AUC = 0.73). The Clinical model was the best performing model

(AUC = 0.77) and adding the Radiomics+Dosiomics predictors with the Clinical model did

not reveal an enhancement in predictive power.

ROI-V5

Generally, the logistic classifier built using bilateral features from ROI-V5 (Figure A-15)

did not vary vastly in performance for the pooled dataset when compared to the ROI-V20

logistic models. The median AUC had a particularly narrow range (0.67-0.70) for the pooled

dataset, with Radiomics+Dosiomics+Clinical noteably performing the strongest.

The models fit on datasets stratified by radiation modality revealed some difference,

especially for the 3DCRT subgroup when compared with the ROI-V20 bilateral logistic

model. The model performance for the 3DCRT subgroup did not show a improved Dosiomics

or Radiomics+Dosiomics performance. In fact, the 3DCRT model relative performance was

similar to the pooled dataset and an overall decrease the predictive performance was observed

(Figure A-15). The models again had a very narrow ranged with median AUC ranging from

0.64-0.65.

The Dosiomics model (AUC =0.78) was the strongest performing model (Figure A-

15). However, including the combining the radiomics and dosiomics features in the Ra-
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diomics+Dosiomics model did not further improve the performance in logistic regression

setting. The Clinical model (AUC=0.77) performed comparably to the Dosiomics model.

Combining the Radiomics+Dosiomics and Clinical features together did not exhibit an in-

crease in the predictive power compared to the Clinical model.

4.2 Ipsilateral Model

ROI-V20

The logistic classifier built using ipsilateral ROI-V20 features (Figure A-14) exhibited modest

performance across the pooled, 3DCRT and IMRT datasets.

The pooled Radiomics+Dosiomics (AUC = 0.67) model performance was comparable to

the Clinical (AUC = 0.67). The Radiomics+Dosiomics+Clinical model (AUC = 0.69) did

show slight improvement over the Clinical model.

The Radiomics+Dosiomics model (AUC = 0.70) was the again the best performing model

out of the classifiers fit on the 3DCRT subgroup. Combining the Radiomics+Dosiomics

predictors with the Clinical (AUC = 0.66) did not enhance the predictive performance of

the Radiomics+Dosiomics+Clinical (AUC =0.66) model.

IMRT subgroup models showed peculiar change in performance in that combining the

Radiomics (AUC = 0.69) and Dosiomics (AUC = 0.71) features together weaker model

(Radiomics+Dosiomics AUC = 0.64) compared to the constituent models for the ipsilateral

ROI-V20 features. The Clinical model (AUC = 0.77) was the best performing model.

ROI-V5

Radiomics+Dosiomics+Clinical model (AUC = 0.71) for the pooled dataset showed an ap-

preciable increase in predictive power compared to the ROI-V20 ipsilateral Radiomics+Dosiomics+Clinical

(AUC=0.69) model as well as the corresponding Clinical model (AUC = 0.67) (Figure A-17).

For the 3DCRT subgroup, all models showed comparable modest performance with

Dosiomics showing the weakest performance (AUC = 0.65) and the Radiomics (AUC =

0.69) model showing the strongest performance followed by the Radiomics+Dosiomics model

(AUC = 0.68) (Figure A-17.

The Clinical model was the best performing model for the IMRT subgroup far outper-

forming the individual or composite models. Interestingly, similar to ROI-V20 ipsilateral
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models, the composite Radiomics+Dosiomics model showed a decrease in performance in

logistic setting.
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Chapter 5

Random Forest Classification Models
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5.1 Bilateral Models

ROI-V20

Figure A-10 shows the test AUC plotted for the bilateral ROI-V20 RF models stratified by

radiation modality. For the pooled dataset (Figure A-10, left), the Dosiomics model (AUC =

0.66) had a stronger performance than the Radiomics model (AUC = 0.60) and the difference

was statistically significant (p = 0.01). The combined Radiomics+Dosiomics model (AUC =

0.71) improved significantly over the individual models. The Clinical model was not found to

be statistically better than the Radiomics+Dosiomics model and vice-versa. The combined

Radiomics+Dosiomics+Clinical (AUC = 0.76) model was the best performing model and

statistically significantly better than the Clinical and Radiomics+Dosiomics model (p<0.01).

Radiomics+Dosiomics performance (AUC = 0.76) was appreciably higher for 3DCRT

(Figure A-10, middle) and statistically better (p = 0.01) than the Clinical model (AUC =

0.60) (Figure ??a). Including the clinical predictors into the Radiomics+Dosiomics model did

not result in an improvement in the predictive power. The Radiomics+Dosiomics+Clinical

model was statistically better (p<0.01) than the Clinical model.

For the IMRT subgroup (Figure A-10, right), contrary to ROI-V5, an overall stronger

trend across all models was not observed. Notwithstanding, the Radiomics+Dosiomics model

(AUC = 0.72) was still statistically stronger than the Radiomics model (AUC = 0.67, p=

0.07). Radiomics+Dosiomics and Clinical model were at par with each other. Including the

Radiomics+Dosiomics predictors to the Clinical model, significantly enhanced the predictive

power of the Clinical model (AUC = 0.77).

ROI-V5

Figure A-11 shows the test AUC plotted for the bilateral ROI-V5 RF models stratified

by radiation modality. For the pooled analysis (Figure A-11, left), while the individual

Radiomics (AUC = 0.59) and Dosiomics (AUC = 0.59) model performance was poor, Ra-

diomics+Dosiomics model (AUC = 0.65) showed significant (p <0.05) improvement in pre-

dictive power over the respective individual models. Radiomics+Dosiomics+Clinical model

performed the best (AUC = 0.73) in the pooled analysis but was not statistically better

than the Clinical model.

Stratifying by radiation modality revealed our approach’s true benefit. For the 3DCRT
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subgroup ((Figure A-11, middle), model performance was mostly comparable to the pooled

cohort, except that the combined Radiomics+Dosiomics+Clinical model was statistically

better (p <0.01) than the Clinical model. Models derived from radiomics and dosiomics

features exhibited stronger predictive performance for IMRT (Figure A-11, right). The Ra-

diomics model (AUC = 0.72) showed moderate performance as did the Dosiomics model

(AUC = 0.71). The Radiomics+Dosiomics model was statistically better than the individual

models (p ≤ 0.01). Statistically significant performance gains were again observed for the

combined Radiomics+Dosiomics model (AUC = 0.77) and Radiomics+Dosiomics+Clinical

model (AUC = 0.81) relative to the Clinical model (AUC = 0.73).

5.2 Ipsilateral Model

ROI-V20

Figure A-12 shows the test AUC plotted for the ipsilateral ROI-V20 RF models stratified

by radiation modality. The Dosiomics predictors were more effective at predicting RP than

the Radiomics model (Figure A-12, left). An increase in the overall AUC was observed

for the Radiomics+Dosiomics model but the Clinical (AUC = 0.73) model was statistically

stronger (p 𝑙𝑒0.01) than the Radiomics+Dosiomics (AUC = 0.68) model. Including the

Radiomics+Dosiomics model with the Clinical mode, Radiomics+Dosiomics+Clinical (AUC

= 0.75), did slightly (p = 0.06) improve the model over the Clinical model alone but strictly

speaking, the difference was not statistically significant according the p 𝑙𝑒 0.05 criteria used

for our study.

The performance of the ROI-V20 ipsilateral radiomics and dosiomics features exhibited

particularly stronger combined performance for the 3DCRT subgroup (Figure A-12, middle).

Specifically, the Radiomics+Dosiomics alone was statistically stronger (p 𝑙𝑒 0.05) than the

Clinical (AUC = 0.69) model. Including the Radiomics+Dosiomics predictors with the

Clinical further improved the RP predictive performance (Radiomics+Dosiomics+Clinical,

AUC = 0.77).

For the IMRT subgroup, the Radiomics and Dosiomics fared comparably (AUC = 0.68)

((Figure A-12, right)). The combined performance of the features (Radiomics+Dosiomics,

AUC = 0.75)) was better than its individual constituents and based on the permutation

test results, the Clinical was not statistically better than the Radiomics+Dosiomics model.
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The Radiomics+Dosiomics+Clinical (AUC = 0.77) model, however, was the best performing

model and enhancement over the Clinical model alone was statistically significant (p 𝑙𝑒 0.05).

ROI-V5

Figure A-13 shows the test AUC plotted for the ipsilateral ROI-V5 RF models stratified

by radiation modality. The pooled performance (Figure A-13, left) of the individual ROI-

V5 ipsilateral Dosiomics was slightly better than random (AUC = 0.59). The Clinical

(AUC = 0.73) model was able to outperform (p 𝑙𝑒 0.01) the Radiomics+Dosiomics (AUC

= 0.68) model. Including the combined feature set with the clinical predictors augmented

the predictive ability of the model (Radiomics+Dosiomics+Clinical, AUC = 0.75). The

difference between the Radiomics+Dosiomics+Clinical and Clinical model was statistically

significant (p 𝑙𝑒 0.01).

The 3DCRT subgroup Radiomics+Dosiomics model was once again the second best

model (Figure A-13, middle), far outperforming its individual constituent Radiomics and Do-

siomics model as well as the Clinical model. The difference between the Radiomics+Dosiomics

amd Clinical model was statistically significant. As expected, combining the clinical pre-

dictors with the Radiomics+Dosiomics model, improved test AUC slightly but the overall

model performance was still statistically stronger than the Clinical model.
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Chapter 6

Discussion
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As a result of recent advances in radiation delivery modalities, thoracic radio-oncologists

have successfully been able to deliver higher therapeutic doses of radiation in an attempt to

affect better outcomes. Despite the superiority of IMRT, owing to higher dose conformality

and normal tissue sparing, the locoregional failure rates remains fairly high as compared

to other sites. Over 40% of the patients suffer from loco-regional recurrence event within 2

years of initial course of radiation (Figure A-18). Moreover, while IMRT has proven to be

protective over conventional 3DCRT [10], RP is still a major consideration for the treatment

of locally advanced-stage lung cancer patients. Achieving tighter local control requires safely

escalating the prescription dose to the tumor but this necessitates assessing patient-specific

pre-treatment risk to develop RP.

Our efforts described in this work centered around evaluating the predictive perfor-

mance of radiomics and dosiomics features to predict RP in a stratified analysis. The ROI

dependence of these features was assessed by using two types of ROI, namely ROI-V20

and ROI-V5. Furthermore, the lung-sided was also considered by computing radiomics and

dosiomics features from the bilateral and ipsilateral lung.

The univariate performance of both radiomics and dosiomics features for the 3DCRT

subgroup was moderate to poor. The bilateral mRMR radiomics features selected on the

3DCRT for ROI-V20 and ROI-V5 were protective in nature. This was also largely true

for the ipsilateral features. Such a trend was not seen for the dosiomics features selected

on the 3DCRT. Protective imaging biomarkers can help physicians in safely escalating the

prescription for patients that are less likely to develop RP.

Compared to ROI-V5, ROI-V20 ipsilateral and bilateral dosiomics features peformance

was stronger and all but one of the features were statistically significant. This was not true

for the ROI-V5 dosiomics features. Our univariate analysis also showed that the radiomics

and dosiomics features selected on the IMRT subgroup were comparatively much stronger

predictors of RP compared to the 3DCRT features. In contrast to the 3DCRT, no strict

directionality was observed for the bilateral and ipsilateral radiomics features.

Bilateral ROI-V5 shape-based features, such as Flatness and Elongation were stronger

predictors of RP over other textural and intensity based features for the IMRT subgroup

(Figure ). These findings highlight that the spatial distribution of the V5 dose, in addition

to the DVH-based metrics like V20 and MLD (Figure A-5, may be vitally important for

accurately assessing RP risk for a particular patient. High-level features extracted from
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dose-based ROIs are able to provide new information that is unused when a plan is evaluated

using V20 or MLD alone. In addition, for IMRT patients HU textural non-uniformity and

dose non-uniformity measures for the ipsilateral lung were positively correlate with RP

(Figure ??,A-8)

For the multivariate analysis, a logistic classification and the random forest classifica-

tion models were trained and tested using the radiomics, dosiomics, radiomics+dosiomics,

radiomics+dosiomics+clinical, and clinical feature sets. The logistic classifiers were on av-

erage performed better than the corresponding random forest models for the individual

radiomics and dosiomics features (Figure A-14, A-16, A-15, A-17).

However, the logistic performance for the combined feature sets was underwhelming.

However, random forest Radiomics+Dosiomics and Radiomics+Dosiomics+Clinical models

were effective at predicting RP and statistically better than Clinical model. These findings

confirm the assumption in our initial hypotheses that the interaction effects between the CT

features and dose features may play an important role in predicting RP compared to the

DVH-based clinical model.

We find that the radiodosiomics approach exhibits stronger performance for IMRT across

all the models. The dosiomics features may be intrinsically better suited for IMRT-type dose

distributions as they tend to be spatially more hetrogeneous than 3DCRT dose distributions.

It could also explain in part why the radiomics and dosiomics features perform particularly

well on IMRT cohort. Therefore, the effectiveness of our approach on a more general patient

population must be proven before clinical adaptation.

The dose-based ROIs utilized for feature extraction manifest itself as performance varia-

tion between the two radiation modalities. Higher conformality and tighter dose-distributions

in IMRT results in greater overlap with the pulmonary tissue which V5 is able to represent.

Meanwhile, for 3DCRT V5 provides very little additional pulmonary overlap in addition to

the ROI-V20. As such, the 3DCRT Radiomics+Dosiomics model generated using the ROI-

V20 performed better compared to ROI-V5 (p <0.01). The opposite was true for IMRT

in that the ROI-V5 Radiomics+Dosiomics model was statistically stronger than the V20

counterpart (p = 0.02) as well as the Clinical model (p <0.01). In other words, the role of

ipsilateral V20 and features extracted from that region are strongly predictive of RP risk

in patients receiving 3DCRT. On the other hand, the bilateral V5 features are strongly

predictive of RP in patients receiving IMRT.
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The aforementioned findings were also limited by numerous factors and these caveats

are worth mentioning explicitly. Firstly, due to the unavailability of a external validation

dataset, the random forest and logistic machine-learning models were validated internally

using 10-fold cross-validation using 70%/30% train/test data partition. We believe that

while using a 10-fold cv approach was sufficient for this study, the performance of our

models must be evaluated on an external dataset before clinical adoption. Moreover, the

training process was also limited by the low number of RP cases in the dataset. This was

partly remedied in our analysis by employing SMOTE resampling technique. Our findings

will need to be validated on a much larger dataset, even though we anticipate that any RP

related dataset will likely have low event rate, consistent with the published RP prevalence

rates for NSCLC treated with CRT, however, a model trained on larger number of RP cases

will ensure a more robust RP assessment with lower AUC variability. Alternatively, a larger

dataset may allow for a two-step training process in which events and non-event models are

trained and test separately. The final binary RP predictions would then be pooled using

boolean logic. Such an approach could help physicians in classifying cases that will benefit

from dose-escalation.

The cohort analyzed in this study spans a time-frame which also coincides with the

introduction of IMRT at BWH (Figure ??. A high majority of the IMRT cases considered

in our study were selected by the physicians to the receive the newly commissioned modality.

This selection bias means that the IMRT cases in our dataset were inherently higher-risk as

seen by the larger PTV volumes (Table B.5). The efficacy of the radiodosiomics approach

must be evaluated on an IMRT/VMAT dataset that includes patients representing a wide

crosssection of disease and risk.

The study of radiomics and dosiomics is based in features generated from certain ROI.

While the ROI method is great for generating building blocks of new information, they tend

to make the training process tedious and subjective. It will be interesting to use some of

intuition developed in our work to implement a multi-modality or multi-input deep learning

based approach that ties together the CT and Dose spatial information.
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Chapter 7

Conclusion
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We describe a promising new approach to model RP risk for patients being treated with

radiation treatment for locally-advanced lung cancer that utilizes pre-existing CT image

data and treatment plan dose-distributions. Our multivariate results prove that incoporat-

ing dosiomics features along with radiomics features in a random forest classifier allows

for an improved prediction of RP, especially for IMRT-type dose distributions. While the

combined radiomics and dosiomics approach performance was stronger for IMRT dataset,

the Radiomics+Dosiomics model was extremely effective at predicting RP for 3DCRT and

significantly (p≤0.05) better than the Clinical model. The goal of such an approach is to

assist physicians in customizing a treatment prescription based on patient’s risk level and

type of prescribed radiation treatment. A patient with a low pre-treatment RP risk could

be treated with a more aggressive radiation prescription in order achieve excellent locore-

gional control. Conversely, a patient with a high pre-treatment risk could be considered for

more conservative dose prescription. In a sense, our approach is able to capture a patient’s

baseline differences in anatomy and dose distributions.
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Appendix A

Figures
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Figure A-1: Radiation Modality as a function treatment start date. Introduction of IMRT
at BWH. High risk patients elevated to IMRT instead of 3DCRT initially
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Figure A-2: Machine Learning Architecture for RP Prediction
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Figure A-3: Radiation Modality

Figure A-4: Treatment Modality
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Figure A-5: Univariate predictive perform of clinical predictors for the pooled dataset and
stratified by radiation modality
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V20 Bilateral Univariate Performance

Figure A-6: Univariate predictive performance of the the top 5 mRMR selected bilateral
ROI-V20 Radiomics (left) and Dosiomics (right) features
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V5 Bilateral Univariate Performance

Figure A-7: Univariate predictive performance of the the top 5 mRMR selected bilateral
ROI-V5 Radiomics (left) and Dosiomics (right) features
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V20 Ipsilateral Univariate Performance

Figure A-8: Univariate predictive performance of the the top 5 mRMR selected ipsilateral
ROI-V20 Radiomics (left) and Dosiomics (right) features
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V5 Ipsilateral Univariate Performance

Figure A-9: Univariate predictive performance of the the top 5 mRMR selected ipsilateral
ROI-V5 Radiomics (left) and Dosiomics (right) features
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Random Forest Classifier for ROI-V20 Bilateral Features

Figure A-10: Random Forest performance of bilateral ROI-V20 features compared against
the clinical model using permutation test (** - p≤0.01, * - p≤0.05). Radiodosiomics model
augments the clinical model but the gains are more noticeable in the IMRT subgroup
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Random Forest Classifier for ROI-V5 Bilateral Features

Figure A-11: Random Forest performance of bilateral ROI-V5 features compared against
the clinical model using permutation test (** - p≤0.01, * - p≤0.05). Radiodosiomics (Ra-
diomics+Dosiomics) model augments the clinical model. Absolute performance is especially
stronger for the IMRT subsample
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Random Forest Classifier for ROI-V20 Ipsilateral Features

Figure A-12: Random Forest performance of ipsilateral ROI-V20 features compared against
the clinical model using permutation test (** - p≤0.01, * - p≤0.05). Radiodosiomics model
augments the clinical model but the gains are more noticeable in the IMRT subsample
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Random Forest Classifier for ROI-V5 Ipsilateral Features

Figure A-13: Random Forest performance of ipsilateral ROI-V5 features compared against
the clinical model using permutation test (** - p≤0.01, * - p≤0.05). Radiodosiomics (Ra-
diomics+Dosiomics) model augments the clinical model. Absolute performance is especially
stronger for the IMRT subsample
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Logistic Classifier for ROI-V20 Bilateral Features

Figure A-14: Logistic classifier performance of the bilateral ROI-V20 radiomics, dosiomics
and the combined models plotted along with the clinical model
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Logistic Classifier for ROI-V5 Bilateral Features

Figure A-15: Logistic classifier performance of the bilateral ROI-V5 radiomics, dosiomics
and the combined models plotted along with the clinical model
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Logistic Classifier for ROI-V20 Ipsilateral Features

Figure A-16: Logistic classifier performance of the ipsilateral ROI-V20 radiomics, dosiomics
and the combined models plotted along with the clinical model

54



www.manaraa.com

Logistic Classifier for ROI-V5 Ipsilateral Features

Figure A-17: Logistic classifier performance of the ipsilateral ROI-V5 radiomics, dosiomics
and the combined models plotted along with the clinical model
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Figure A-18: Locoregional failure rates. A significant number of patients who were treated
with 3DCRT and IMRT reccured within 1 year

Figure A-19: The process of generating ROI-V5 by using the anatomical (CT) and dose
distribution (TPS). The tumor subtracted pulmonary structures were overlayed with the
dose distribution to retain a binary pulmnonary volume that received ≥ 5 Gy
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Appendix B

Tables
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Feature Class Original LoG (5x) Wavelet (15x)
Shape 14

First Order Statistics 18 90 288

Gray Level Co-occurrence Matrix (GLCM) 24 120 360

Gray Level Size Zone Matrix (GLSZM) 16 80 240

Gray Level Run Length Matrix (GLRLM) 16 80 240

Neighbouring Gray Tone Difference Matrix (NGTDM) 5 25 75

Gray Level Dependence Matrix (GLDM) 14 70 210

Table B.1: Breakdown of 1967 Radiomics & Dosiomics features listing the enabled feature classes and
corresponding number of features extracted from the different image types i.e Original (unfiltered) image,
Laplacian of Gaussian (LoG) filtered image, and Wavelet filtered image

ROI-V5 ROI-V20
Features Pooled IMRT 3DCRT Pooled IMRT 3DCRT
Radiomics 1483 1336
Dosiomics 1222 1072 1266 1185 1119 1172

Table B.2: Number of robust radiomics and dosiomics features (ICC≥0.80). Radiomics
robustness was evaluated on the RIDER Test-Retest dataset (n=22) and the dosiomics
robustness was evaluated on the dose images of the excluded cases (n=102).

Datasets
FeatureType Lung Side ROI
Radiomics Ipsilateral ROI-V20
Dosiomics Ipsilateral ROI-V20
Radiomics Ipsilateral ROI-V5
Dosiomics Ipsilateral ROI-V5
Radiomics Bilateral ROI-V20
Dosiomics Bilateral ROI-V20
Radiomics Bilateral ROI-V5
Dosiomics Bilateral ROI-V5

Table B.3: Feature Datasets
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Total (n = 596) 3DCRT (n= 452) IMRT (n = 144) p Value
Age 65.0 𝑦𝑟𝑠 , (28− 93) 65.0 𝑦𝑟𝑠 , (28− 93) 64.6 𝑦𝑟𝑠 , (32− 90) 0.72

Gender 0.39
𝐹𝑒𝑚𝑎𝑙𝑒 299 (50.2%) 222 (49.1%) 77 (53.5%)
𝑀𝑎𝑙𝑒 297 (49.8%) 230 (50.9%) 67 (46.5%)

Smoking 0.14
𝑁𝑒𝑣𝑒𝑟 49 (8.2%) 38 (8.4%) 11 (7.6%)
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 239 (40.1%) 171 (37.8%) 68 (47.2%)
𝐹𝑜𝑟𝑚𝑒𝑟 308 (52.7%) 243 (53.8%) 65 (45.1%)

RadiationPneumonitis 0.02
𝑁𝑜 523 (87.8%) 405 (89.6%) 118 (81.9%)
𝑌 𝑒𝑠 73 (12.2%) 47 (10.4%) 26 (18.1%)

Performance Status 0.10
0 204 (34.2%) 144 (31.9%) 60 (41.7%)
1− 2 379 (63.6%) 298 (65.9%) 81 (56.2%)
3− 4 13 (2.2%) 10 (2.2%) 3 (2.1%)

TreatmentModality 0.01
𝑅𝑇𝑂𝑛𝑙𝑦 36 (6%) 29 (6.4%) 7 (4.9%)
𝐶ℎ𝑒𝑚𝑜𝑅𝑇 354 (59.4%) 252 (55.8%) 102 (70.8%)
𝐶ℎ𝑒𝑚𝑜𝑅𝑇 + 𝑆𝑢𝑟𝑔 145 (24.3%) 119 (26.3%) 26 (18%)
𝑆𝑢𝑟𝑔 + 𝐶ℎ𝑒𝑚𝑜𝑅𝑇 61 (10.2%) 52 (11.5%) 9 (6.3%)

Overall Stage 0.01
𝐼𝐼𝐴 34 (5.7%) 30 (6.6%) 4 (2.8%)
𝐼𝐼𝐵 35 (5.9%) 26 (5.8%) 9 (6.2%)
𝐼𝐼𝐼𝐴 332 (55.7%) 263 (58.2%) 69 (47.9%)
𝐼𝐼𝐼𝐵 195 (32.7%) 133 (29.4%) 62 (43.1%)

Histology 0.44
𝐴𝑑𝑒𝑛𝑜𝑐𝑎𝑟𝑐𝑖𝑛𝑜𝑚𝑎 266 (44.6%) 206 (45.5%) 60 (41.7%)
𝑆𝑞𝑢𝑎𝑚𝑜𝑢𝑠𝐶𝑒𝑙𝑙 𝐶𝑎𝑟𝑐𝑖𝑛𝑜𝑚𝑎 191 (32.0%) 144 (31.8%) 47 (32.6%)
𝐿𝑎𝑟𝑔𝑒𝐶𝑒𝑙𝑙 𝐶𝑎𝑟𝑐𝑖𝑛𝑜𝑚𝑎 99 (16.6%) 74 (16.4%) 25 (17.4%)

Table B.4: Patient Characterstics, Treatment Information, and Outcomes
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3DCRT (n= 452) IMRT (n = 144) p Value
MeanPTV Volume (cc) 374.1 517.9 1.5× 10-10

RTDose Delivered 0.08
≤ 54𝐺𝑦 126 (27.9%) 25 (17.4%)
≤ 60𝐺𝑦 80 (17.7%) 28 (19.4%)
≤ 66𝐺𝑦 198 (43.8%) 73 (50.7%)
> 66𝐺𝑦 48 (10.6%) 18 (12.5%)

DVH Metrics
𝐵𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑉20 24.0 26.3 3.4× 10-5

𝐵𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑉5 40.6 49.8 8.4× 10-14

𝑀𝐿𝐷 [𝐺𝑦] 13.5 15.2 1.1× 10-6

Mean ROIVolume [cc]
𝐵𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑉20 778.6 835.7 0.08
𝐵𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑉5 1343.4 1612.8 2.6× 10-6

𝐼𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑉20 646.9 706.7 0.04
𝐼𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑉5 909.9 1048.6 6.1× 10-4

Table B.5: Dosimetric Characterstics

Clinical Predictor Variable Encoding
Age continuous
Gender binary
Smoking binary
Pack Years continuous
Concurrent Chemo binary
Performance status (ps) categorical
Mean Lung Dose (MLD) continuous
V20 continuous
V5 continuous
Surgery binary
Treatment Modality categorical

Table B.6: Encoding type for all the clinical variables considered in the Clinical model
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Median AUC Range
Bilateral Model Pooled IMRT 3DCRT Pooled IMRT 3DCRT
Clinical 0.72 0.73 0.69 0.54-0.84 0.55-0.85 0.53-0.82
Radiomics 0.60 0.67 0.66 0.51-0.72 0.50-0.89 0.51-0.81
Dosiomics 0.66 0.70 0.66 0.51-0.80 0.51-0.89 0.51-0.79
Radiomics + Dosiomics 0.71 0.72 0.76 0.58-0.81 0.54-0.90 0.60-0.89
Radiomics + Dosiomics + Clinical 0.76 0.79 0.77 0.67-0.86 0.63-0.93 0.59-0.90

Table B.7: Test AUC for bilateral ROI-V20 random forest models iterated 100 times into 70% train,
30% test with 10-fold cross validation and SMOTE resampling to address class imbalance.

Median AUC Range
Bilateral Model Pooled IMRT 3DCRT Pooled IMRT 3DCRT
Clinical 0.72 0.73 0.69 0.54-0.84 0.55-0.85 0.53-0.82
Radiomics 0.60 0.72 0.58 0.50-0.70 0.50-0.95 0.50-0.72
Dosiomics 0.59 0.71 0.59 0.50-0.80 0.50-0.90 0.50-0.74
Radiomics + Dosiomics 0.65 0.77 0.63 0.55-0.77 0.56-0.94 0.50-0.77
Radiomics + Dosiomics + Clinical 0.73 0.81 0.72 0.59-0.81 0.62-0.95 0.56-0.86

Table B.8: Test AUC for bilateral ROI-V5 random forest models iterated 100 times into 70% train, 30%
test with 10-fold cross validation and SMOTE resampling to address class imbalance.
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Median AUC Range
Ipsilateral Model Pooled IMRT 3DCRT Pooled IMRT 3DCRT
Clinical 0.73 0.74 0.69 0.61-0.82 0.56-0.93 0.54-0.85
Radiomics 0.60 0.68 0.64 0.50-0.69 0.51-0.86 0.51-0.79
Dosiomics 0.65 0.68 0.68 0.52-0.73 0.52-0.86 0.53-0.85
Radiomics + Dosiomics 0.68 0.71 0.75 0.53-0.81 0.50-0.93 0.61-0.87
Radiomics + Dosiomics + Clinical 0.75 0.77 0.77 0.61-0.83 0.58-0.93 0.61-0.89

Table B.9: Test AUC for ipsilateral ROI-V20 random forest models iterated 100 times into 70% train,
30% test with 10-fold cross validation and SMOTE resampling to address class imbalance.

Median AUC Range
Ipsilateral Model Pooled IMRT 3DCRT Pooled IMRT 3DCRT
Clinical 0.73 0.74 0.69 0.61-0.82 0.56-0.93 0.54-0.85
Radiomics 0.64 0.69 0.67 0.52-0.78 0.50-0.86 0.51-0.81
Dosiomics 0.59 0.65 0.65 0.50-0.69 0.50-0.88 0.50-0.77
Radiomics + Dosiomics 0.67 0.72 0.77 0.52-0.80 0.53-0.91 0.61-0.92
Radiomics + Dosiomics + Clinical 0.75 0.79 0.77 0.66-0.83 0.61-0.92 0.61-0.91

Table B.10: Test AUC for ipsilateral ROI-V5 random forest models iterated 100 times into 70% train,
30% test with 10-fold cross validation and SMOTE resampling to address class imbalance.
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Median AUC Range
Bilateral Model Pooled IMRT 3DCRT Pooled IMRT 3DCRT
Clinical 0.68 0.77 0.64 0.55-0.79 0.56-0.94 0.50-0.83
Radiomics 0.64 0.69 0.67 0.52-0.77 0.50-0.89 0.50-0.81
Dosiomics 0.65 0.73 0.60 0.53-0.79 0.53-0.91 0.50-0.76
Radiomics + Dosiomics 0.66 0.69 0.70 0.50-0.81 0.50-0.90 0.52-0.86
Radiomics + Dosiomics + Clinical 0.67 0.66 0.66 0.52-0.78 0.50-0.9 0.52-0.85

Table B.11: Test AUC for bilateral ROI-V20 logistic classification models iterated 100 times into 70%
train, 30% test with 10-fold cross validation and SMOTE resampling to address class imbalance.

Median AUC Range
Bilateral Model Pooled IMRT 3DCRT Pooled IMRT 3DCRT
Clinical 0.68 0.77 0.64 0.55-0.79 0.56-0.94 0.50-0.83
Radiomics 0.67 0.71 0.63 0.54-0.84 0.50-0.90 0.50-0.79
Dosiomics 0.67 0.78 0.63 0.52-0.79 0.58-0.91 0.50-0.76
Radiomics + Dosiomics 0.68 0.75 0.63 0.51-0.83 0.51-0.94 0.50-0.80
Radiomics + Dosiomics + Clinical 0.70 0.70 0.65 0.53-0.86 0.50-0.93 0.52-0.85

Table B.12: Test AUC for bilateral ROI-V5 logistic classification models iterated 100 times into 70%
train, 30% test with 10-fold cross validation and SMOTE resampling to address class imbalance.
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Median AUC Range
Ipsilateral Model Pooled IMRT 3DCRT Pooled IMRT 3DCRT
Clinical 0.67 0.77 0.66 0.52-0.80 0.54-0.98 0.50-0.82
Radiomics 0.64 0.69 0.67 0.51-0.76 0.51-0.90 0.51-0.81
Dosiomics 0.66 0.71 0.66 0.54-0.78 0.53-0.93 0.55-0.82
Radiomics + Dosiomics 0.67 0.64 0.70 0.55-0.79 0.50-0.84 0.56-0.85
Radiomics + Dosiomics + Clinical 0.69 0.64 0.66 0.54-0.81 0.50-0.79 0.51-0.84

Table B.13: Test AUC for ipsilateral ROI-V20 logistic classification models iterated 100 times into 70%
train, 30% test with 10-fold cross validation and SMOTE resampling to address class imbalance.

Median AUC Range
Ipsilateral Model Pooled IMRT 3DCRT Pooled IMRT 3DCRT
Clinical 0.67 0.77 0.66 0.52-0.80 0.54-0.98 0.50-0.82
Radiomics 0.67 0.68 0.69 0.55-0.79 0.51-0.90 0.58-83
Dosiomics 0.66 0.66 0.65 0.51-0.78 0.50-0.88 0.52-0.78
Radiomics + Dosiomics 0.69 0.62 0.68 0.53-0.79 0.50-0.83 0.56-0.84
Radiomics + Dosiomics + Clinical 0.71 0.64 0.67 0.52-0.82 0.50-0.93 0.52-0.84

Table B.14: Test AUC for ipsilateral ROI-V5 logistic classification models iterated 100 times into 70%
train, 30% test with 10-fold cross validation and SMOTE resampling to address class imbalance.
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